Skip to content

Knowledge Bases & RAG

Fluxbase provides built-in support for Retrieval-Augmented Generation (RAG), allowing you to create knowledge bases that provide context to AI chatbots. This enables chatbots to answer questions based on your custom documentation, product information, or any text content.

Knowledge bases in Fluxbase enable:

  • RAG-Powered Chatbots: Chatbots automatically retrieve relevant context from knowledge bases
  • Vector Search: Semantic similarity search using pgvector
  • Document Management: Upload, chunk, and embed documents automatically
  • Multiple Chunking Strategies: Recursive, sentence, paragraph, or fixed-size chunking
  • Flexible Linking: Connect multiple knowledge bases to a single chatbot
graph LR
A[User Query] --> B[Embed Query]
B --> C[Vector Search]
C --> D[Retrieve Chunks]
D --> E[Build Context]
E --> F[LLM with RAG Context]
F --> G[Response]
subgraph Knowledge Base
H[Documents] --> I[Chunking]
I --> J[Embedding]
J --> K[(pgvector)]
end
C --> K
style B fill:#10a37f,color:#fff
style K fill:#336791,color:#fff
style F fill:#3178c6,color:#fff

The RAG pipeline:

  1. Documents are chunked into smaller segments
  2. Each chunk is embedded using an embedding model (e.g., text-embedding-3-small)
  3. Embeddings are stored in PostgreSQL using pgvector
  4. When a user asks a question, the query is embedded
  5. Similar chunks are retrieved via vector similarity search
  6. Retrieved context is injected into the chatbot’s system prompt
  7. The LLM generates a response using the provided context

Before using knowledge bases, ensure:

  1. pgvector Extension: Install the pgvector extension in PostgreSQL
  2. Embedding Provider: Configure an embedding provider (OpenAI, Azure, or Ollama)
  3. AI Feature Enabled: Enable the AI feature in Fluxbase settings
-- Enable pgvector extension
CREATE EXTENSION IF NOT EXISTS vector;

Automatic Fallback: If you already have an AI provider configured for chatbots (e.g., OpenAI API key set), embeddings will automatically work using those same credentials. No additional configuration is needed.

Explicit Configuration: For fine-grained control or to use a different provider for embeddings, set these environment variables:

Terminal window
# OpenAI (explicit configuration)
FLUXBASE_AI_EMBEDDING_ENABLED=true
FLUXBASE_AI_EMBEDDING_PROVIDER=openai
FLUXBASE_AI_EMBEDDING_MODEL=text-embedding-3-small
FLUXBASE_AI_OPENAI_API_KEY=sk-...
# Or Azure OpenAI
FLUXBASE_AI_EMBEDDING_ENABLED=true
FLUXBASE_AI_EMBEDDING_PROVIDER=azure
FLUXBASE_AI_AZURE_API_KEY=...
FLUXBASE_AI_AZURE_ENDPOINT=https://your-resource.openai.azure.com
FLUXBASE_AI_AZURE_EMBEDDING_DEPLOYMENT_NAME=text-embedding-ada-002
# Or Ollama (local)
FLUXBASE_AI_EMBEDDING_ENABLED=true
FLUXBASE_AI_EMBEDDING_PROVIDER=ollama
FLUXBASE_AI_OLLAMA_ENDPOINT=http://localhost:11434
FLUXBASE_AI_EMBEDDING_MODEL=nomic-embed-text

Default Models (when using AI provider fallback):

  • OpenAI: text-embedding-3-small
  • Azure: text-embedding-ada-002
  • Ollama: nomic-embed-text
  1. Navigate to Knowledge Bases in the sidebar
  2. Click Create Knowledge Base
  3. Configure:
    • Name: Unique identifier (e.g., product-docs)
    • Description: What content this KB contains
    • Chunk Size: Characters per chunk (default: 512)
    • Chunk Overlap: Overlap between chunks (default: 50)
  4. Click Create
import { createClient } from '@fluxbase/sdk'
const client = createClient('http://localhost:8080', 'service-role-key')
// Create a knowledge base
const { data: kb, error } = await client.admin.ai.createKnowledgeBase({
name: 'product-docs',
description: 'Product documentation and FAQs',
chunk_size: 512,
chunk_overlap: 50,
chunk_strategy: 'recursive', // or 'sentence', 'paragraph', 'fixed'
})
console.log('Created KB:', kb.id)
Terminal window
curl -X POST http://localhost:8080/api/v1/admin/ai/knowledge-bases \
-H "Authorization: Bearer YOUR_SERVICE_ROLE_KEY" \
-H "Content-Type: application/json" \
-d '{
"name": "product-docs",
"description": "Product documentation",
"chunk_size": 512,
"chunk_overlap": 50
}'

Once you have a knowledge base, add documents to it. Documents are automatically chunked and embedded.

// Add a document
const { data, error } = await client.admin.ai.addDocument('kb-id', {
title: 'Getting Started Guide',
content: `
# Getting Started with Our Product
Welcome to our product! This guide will help you get started.
## Installation
1. Download the installer from our website
2. Run the installer
3. Follow the on-screen instructions
## First Steps
After installation, launch the application and create an account...
`,
metadata: {
category: 'guides',
version: '1.0',
},
})
console.log('Document ID:', data.document_id)
console.log('Status:', data.status) // 'processing'
const documents = [
{ title: 'FAQ', content: faqContent },
{ title: 'API Reference', content: apiContent },
{ title: 'Troubleshooting', content: troubleshootingContent },
]
for (const doc of documents) {
const { data, error } = await client.admin.ai.addDocument('kb-id', doc)
if (error) {
console.error(`Failed to add ${doc.title}:`, error)
} else {
console.log(`Added ${doc.title}: ${data.document_id}`)
}
}

Documents are processed asynchronously. Check status:

const { data: docs } = await client.admin.ai.listDocuments('kb-id')
for (const doc of docs) {
console.log(`${doc.title}: ${doc.status}`)
// Status: 'pending' | 'processing' | 'indexed' | 'failed'
if (doc.status === 'failed') {
console.error(`Error: ${doc.error_message}`)
}
}

In addition to pasting text content, you can upload document files directly. Fluxbase automatically extracts text from various file formats.

FormatExtensionMIME Type
PDF.pdfapplication/pdf
Plain Text.txttext/plain
Markdown.mdtext/markdown
HTML.html, .htmtext/html
CSV.csvtext/csv
Word Document.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document
Excel Spreadsheet.xlsxapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheet
Rich Text.rtfapplication/rtf
EPUB.epubapplication/epub+zip
JSON.jsonapplication/json

Maximum file size: 50MB

  1. Navigate to Knowledge Bases and select your knowledge base
  2. Click Add Document
  3. Select the Upload File tab
  4. Drag and drop a file or click Browse Files
  5. Optionally provide a custom title
  6. Click Upload Document
// Browser environment
const fileInput = document.getElementById('file') as HTMLInputElement
const file = fileInput.files?.[0]
if (file) {
const { data, error } = await client.admin.ai.uploadDocument(
'kb-id',
file,
'Custom Document Title' // Optional
)
if (data) {
console.log('Document ID:', data.document_id)
console.log('Filename:', data.filename)
console.log('Extracted text length:', data.extracted_length)
console.log('MIME type:', data.mime_type)
}
}
// Node.js environment
import { readFile } from 'fs/promises'
import { Blob } from 'buffer'
const content = await readFile('document.pdf')
const blob = new Blob([content], { type: 'application/pdf' })
const { data, error } = await client.admin.ai.uploadDocument(
'kb-id',
blob,
'My PDF Document'
)
Terminal window
curl -X POST http://localhost:8080/api/v1/admin/ai/knowledge-bases/KB_ID/documents/upload \
-H "Authorization: Bearer YOUR_SERVICE_ROLE_KEY" \
-F "file=@document.pdf" \
-F "title=My Document"

Fluxbase uses specialized libraries to extract text from each file type:

  • PDF: Extracts text content from all pages, preserving paragraph structure
  • DOCX: Extracts text from Word documents including paragraphs and tables
  • XLSX: Extracts content from all sheets, preserving cell structure with tab delimiters
  • HTML: Strips tags and scripts, extracts visible text content
  • CSV: Preserves tabular structure with tab delimiters
  • RTF: Removes RTF formatting codes, extracts plain text
  • EPUB: Extracts text from all chapters in reading order
  • Plain text/Markdown/JSON: Used as-is without transformation
  1. Clean PDFs: Ensure PDFs are text-based, not scanned images (OCR not supported)
  2. Simple formatting: Documents with simpler formatting extract more cleanly
  3. File size: Smaller files process faster; split very large documents if needed
  4. Text density: Avoid uploading files with mostly images or charts

Choose the chunking strategy that best fits your content:

StrategyDescriptionBest For
recursiveSplits by paragraphs, then sentences, then charactersGeneral text, documentation
sentenceSplits by sentence boundariesQ&A content, conversational text
paragraphSplits by paragraph (double newlines)Well-structured documents
fixedFixed character count splitsCode, logs, structured data
  • Smaller chunks (256-512): More precise retrieval, better for specific facts
  • Larger chunks (1024-2048): More context per chunk, better for complex topics
  • Overlap (10-20% of chunk size): Prevents losing context at chunk boundaries
// For FAQ-style content (shorter, precise chunks)
await client.admin.ai.createKnowledgeBase({
name: 'faq',
chunk_size: 256,
chunk_overlap: 25,
chunk_strategy: 'sentence',
})
// For technical documentation (larger chunks with context)
await client.admin.ai.createKnowledgeBase({
name: 'tech-docs',
chunk_size: 1024,
chunk_overlap: 100,
chunk_strategy: 'recursive',
})

Connect knowledge bases to chatbots to enable RAG.

Add RAG annotations to your chatbot definition:

/**
* Product Support Bot
*
* @fluxbase:description Product support chatbot with RAG
* @fluxbase:knowledge-base product-docs
* @fluxbase:knowledge-base faq
* @fluxbase:rag-max-chunks 5
* @fluxbase:rag-similarity-threshold 0.7
*/
export default `You are a helpful product support assistant.
Use the provided context to answer questions about our product.
If you don't find relevant information in the context, say so honestly.
Current user ID: {{user_id}}
`
AnnotationDescriptionDefault
@fluxbase:knowledge-baseName of knowledge base to use (can specify multiple)-
@fluxbase:rag-max-chunksMaximum chunks to retrieve5
@fluxbase:rag-similarity-thresholdMinimum similarity score (0.0-1.0)0.7
// Link a knowledge base to a chatbot
const { data, error } = await client.admin.ai.linkKnowledgeBase('chatbot-id', {
knowledge_base_id: 'kb-id',
priority: 1, // Higher priority = searched first
max_chunks: 5, // Max chunks from this KB
similarity_threshold: 0.7,
})
// Update link settings
await client.admin.ai.updateChatbotKnowledgeBase('chatbot-id', 'kb-id', {
max_chunks: 10,
enabled: true,
})
// List linked knowledge bases
const { data: links } = await client.admin.ai.listChatbotKnowledgeBases('chatbot-id')
// Unlink a knowledge base
await client.admin.ai.unlinkKnowledgeBase('chatbot-id', 'kb-id')

When a user sends a message to a RAG-enabled chatbot:

  1. Query Embedding: The user’s message is embedded using the same model as documents
  2. Similarity Search: pgvector finds the most similar chunks across linked knowledge bases
  3. Context Building: Retrieved chunks are formatted into a context section
  4. Prompt Injection: Context is added to the system prompt before the LLM call
  5. Response Generation: The LLM uses the context to generate an informed response

The chatbot receives a system prompt like:

[Original System Prompt]
## Relevant Context
The following information was retrieved from the knowledge base and may be relevant to the user's question:
### From: Getting Started Guide
Welcome to our product! This guide will help you get started...
### From: FAQ
Q: How do I reset my password?
A: Navigate to Settings > Account > Reset Password...
---
Use this context to answer the user's question. If the context doesn't contain relevant information, say so.

Test your knowledge base setup before deploying:

// Search a knowledge base directly
const { data, error } = await client.admin.ai.searchKnowledgeBase(
'kb-id',
'how do I reset my password',
{
max_chunks: 5,
threshold: 0.5, // Lower threshold for testing
}
)
if (data) {
console.log(`Found ${data.count} results:`)
for (const result of data.results) {
console.log(`\n--- ${result.document_title} (${result.similarity.toFixed(3)}) ---`)
console.log(result.content)
}
}
  1. Navigate to Knowledge Bases
  2. Click on your knowledge base
  3. Use the Search tab to test queries
  4. Review similarity scores and retrieved content
  1. Clean Content: Remove unnecessary formatting, headers, footers
  2. Consistent Structure: Use consistent heading styles and formatting
  3. Complete Information: Ensure documents contain full context
  4. Regular Updates: Keep knowledge bases current with product changes
  1. Match Content Type: Use appropriate chunking for your content
  2. Test Different Sizes: Experiment to find optimal chunk size
  3. Monitor Retrieval: Check if retrieved chunks are relevant
  1. Index Size: Keep knowledge bases focused on relevant content
  2. Similarity Threshold: Higher thresholds (0.7-0.8) reduce noise
  3. Chunk Limit: Limit retrieved chunks to avoid context overflow
  1. Access Control: Use RLS policies on knowledge base tables if needed
  2. Sensitive Content: Avoid storing sensitive data in knowledge bases
  3. User Context: Consider user-specific knowledge bases for personalized content
const { data: kb } = await client.admin.ai.createKnowledgeBase({
name: 'support-kb',
description: 'Customer support documentation',
chunk_size: 512,
chunk_overlap: 50,
})
// Add FAQ
await client.admin.ai.addDocument(kb.id, {
title: 'Frequently Asked Questions',
content: `
## Account Questions
### How do I create an account?
Visit signup.example.com and fill out the registration form...
### How do I reset my password?
Click "Forgot Password" on the login page...
## Billing Questions
### How do I update my payment method?
Go to Settings > Billing > Payment Methods...
`,
})
// Add troubleshooting guide
await client.admin.ai.addDocument(kb.id, {
title: 'Troubleshooting Guide',
content: `
## Common Issues
### Error: Connection Failed
1. Check your internet connection
2. Verify the service is running
3. Clear browser cache...
### Error: Authentication Failed
1. Verify your credentials
2. Check if your account is active...
`,
})

Create chatbots/support-bot/index.ts:

/**
* Customer Support Bot
*
* @fluxbase:description AI-powered customer support with knowledge base
* @fluxbase:knowledge-base support-kb
* @fluxbase:rag-max-chunks 5
* @fluxbase:rag-similarity-threshold 0.7
* @fluxbase:allowed-tables support_tickets,users
* @fluxbase:allowed-operations SELECT
* @fluxbase:rate-limit 30
* @fluxbase:public true
*/
export default `You are a friendly customer support assistant.
## Your Role
- Answer questions using the provided knowledge base context
- Help users troubleshoot common issues
- Look up support ticket status when asked
## Guidelines
1. Always check the provided context first
2. If you can't find an answer in the context, say so politely
3. Offer to escalate to human support for complex issues
4. Be friendly and professional
## Available Actions
- Answer questions from knowledge base
- Look up user's support tickets (use execute_sql)
Current user ID: {{user_id}}
`
Terminal window
# Sync chatbot
curl -X POST http://localhost:8080/api/v1/admin/ai/chatbots/sync \
-H "Authorization: Bearer SERVICE_ROLE_KEY"
// Test the chatbot
const chat = client.ai.createChat({
token: userJWT,
onContent: (delta) => process.stdout.write(delta),
})
await chat.connect()
const convId = await chat.startChat('support-bot')
chat.sendMessage(convId, 'How do I reset my password?')
const { data: kb } = await client.admin.ai.getKnowledgeBase('kb-id')
console.log('Documents:', kb.document_count)
console.log('Total Chunks:', kb.total_chunks)
console.log('Embedding Model:', kb.embedding_model)
const { data: docs } = await client.admin.ai.listDocuments('kb-id')
const stats = {
total: docs.length,
indexed: docs.filter(d => d.status === 'indexed').length,
processing: docs.filter(d => d.status === 'processing').length,
failed: docs.filter(d => d.status === 'failed').length,
}
console.log('Document Stats:', stats)

Check embedding provider configuration:

  • Verify FLUXBASE_AI_EMBEDDING_ENABLED=true
  • Confirm client keys are valid
  • Check provider endpoint is accessible

Check document status:

const { data: doc } = await client.admin.ai.getDocument('kb-id', 'doc-id')
console.log('Status:', doc.status)
console.log('Error:', doc.error_message)

Lower similarity threshold for testing:

const { data } = await client.admin.ai.searchKnowledgeBase('kb-id', query, {
threshold: 0.3, // Lower threshold to see more results
})

Check chunk content:

  • Ensure documents are properly chunked
  • Verify content is relevant to expected queries
  • Try different chunking strategies

Verify chatbot has linked knowledge bases:

const { data: links } = await client.admin.ai.listChatbotKnowledgeBases('chatbot-id')
console.log('Linked KBs:', links)

Check annotation syntax:

// Correct
* @fluxbase:knowledge-base my-kb-name
// Wrong (no asterisk in multi-line comment)
@fluxbase:knowledge-base my-kb-name