FluxbaseVector
FluxbaseVector provides vector search functionality using pgvector
Example
Section titled “Example”// Embed text and searchconst { data: results } = await client.vector.search({ table: 'documents', column: 'embedding', query: 'How to use TypeScript?', match_count: 10})
// Embed text directlyconst { data: embedding } = await client.vector.embed({ text: 'Hello world' })Constructors
Section titled “Constructors”new FluxbaseVector()
Section titled “new FluxbaseVector()”new FluxbaseVector(
fetch):FluxbaseVector
Parameters
Section titled “Parameters”| Parameter | Type |
|---|---|
fetch | FluxbaseFetch |
Returns
Section titled “Returns”Methods
Section titled “Methods”embed()
Section titled “embed()”embed(
request):Promise<FluxbaseResponse<EmbedResponse>>
Generate embeddings for text
Parameters
Section titled “Parameters”| Parameter | Type |
|---|---|
request | EmbedRequest |
Returns
Section titled “Returns”Promise<FluxbaseResponse<EmbedResponse>>
Example
Section titled “Example”// Single textconst { data } = await client.vector.embed({ text: 'Hello world'})console.log(data.embeddings[0]) // [0.1, 0.2, ...]
// Multiple textsconst { data } = await client.vector.embed({ texts: ['Hello', 'World'], model: 'text-embedding-3-small'})search()
Section titled “search()”search<
T>(options):Promise<FluxbaseResponse<VectorSearchResult<T>>>
Search for similar vectors with automatic text embedding
This is a convenience method that:
- Embeds the query text automatically (if
queryis provided) - Performs vector similarity search
- Returns results with distance scores
Type Parameters
Section titled “Type Parameters”| Type Parameter | Default type |
|---|---|
T | Record<string, unknown> |
Parameters
Section titled “Parameters”| Parameter | Type |
|---|---|
options | VectorSearchOptions |
Returns
Section titled “Returns”Promise<FluxbaseResponse<VectorSearchResult<T>>>
Example
Section titled “Example”// Search with text query (auto-embedded)const { data } = await client.vector.search({ table: 'documents', column: 'embedding', query: 'How to use TypeScript?', match_count: 10, match_threshold: 0.8})
// Search with pre-computed vectorconst { data } = await client.vector.search({ table: 'documents', column: 'embedding', vector: [0.1, 0.2, ...], metric: 'cosine', match_count: 10})
// With additional filtersconst { data } = await client.vector.search({ table: 'documents', column: 'embedding', query: 'TypeScript tutorial', filters: [ { column: 'status', operator: 'eq', value: 'published' } ], match_count: 10})